Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data

نویسندگان

  • Bin Ran
  • Li Song
  • Jian Zhang
  • Yang Cheng
  • Huachun Tan
چکیده

Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data

Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper propose...

متن کامل

Traffic State Estimation Using Floating Car Data

There is an increasing availability of floating car data both historic, in the form of trajectory datasets and real-time, in the form of continuous data streams. This paves the way for several advanced traffic management services such as current traffic state estimation, congestion and incident detection and prediction of the short-term evolution of traffic flow. In this paper, we present an an...

متن کامل

Spatio-Temporal Tensor Completion for Estimating Missing Internet Traffic Data

Network traffic data consists of Traffic Matrix (TM), which represents the volumes of traffic between Origin and Destination (OD) pairs in the network. It is a key input parameter of network engineering tasks. However, direct measurement of the OD pairs traffic is usually not feasible. Even good traffic measurement systems can suffer from errors, missing data. So obtaining the ODs traffic preci...

متن کامل

High-order Tensor Completion for Data Recovery via Sparse Tensor-train Optimization

In this paper, we aim at the problem of tensor data completion. Tensor-train decomposition is adopted because of its powerful representation ability and linear scalability to tensor order. We propose an algorithm named Sparse Tensortrain Optimization (STTO) which considers incomplete data as sparse tensor and uses first-order optimization method to find the factors of tensor-train decomposition...

متن کامل

A Fusion Algorithm for Traffic Density Estimation using Sensors and Floating Car Data

This paper deals with data fusion of multiple sources of information for density estimation in traffic networks. A macroscopic approach is adopted by partitioning the network in cells and considering as state of the network the dynamically evolving vehicle densities in the cells. Estimation of the state of the network is of crucial importance in modern ITSs, but direct measurements can be obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016